Optimising Segregated Resource Conservation Network with Cross-Zonal Transfer for Multiple Resources and Qualities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143064" target="_blank" >RIV/00216305:26210/21:PU143064 - isvavai.cz</a>
Result on the web
<a href="http://www.cetjournal.it/cet/21/88/017.pdf" target="_blank" >http://www.cetjournal.it/cet/21/88/017.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET2188017" target="_blank" >10.3303/CET2188017</a>
Alternative languages
Result language
angličtina
Original language name
Optimising Segregated Resource Conservation Network with Cross-Zonal Transfer for Multiple Resources and Qualities
Original language description
Manufacturing industries are continually looking for resource conservation to achieve market competitiveness along with minimum waste discharge for environmental and societal responsibilities. Cooperation between industries to achieve resource sharing through reusing and recycling strategies play a vital role in optimising overall resource consumption, striving towards optimal industrial or urban symbiosis. This paper aims to apply the optimisation framework in a constrained source-sink network considering multiple zones. A special type of constrained resource conservation network, known as segregated targeting problem with dedicated sources and external resources, is considered. The problem contains a set of zones with their own sources and demands and a dedicated resource specified for individual zones. A set of internal sources, freely available for reuse, and external resources are shared among all the zones. In this work, multiple quality constraints that are restricting the allocation of the resources are considered. Unutilised dedicated sources from one zone are reused in other zones through different piping connections with a certain cost associated with it to maximise the utilisation of available sources. The objectives are to minimise the overall resource intake and the total cost for the whole network. This framework enables the selection of optimum zonal integration that yields the optimal cost or maximum resources recycling rate. The distinctive nature of zonal segregation, considering source sharing and multiple qualities, widens the scope of applicability of this approach. The method can be applied to various problem domains, such as regional material recovery networks, sector-wise energy planning, and financial planning. © 2021, AIDIC Servizi S.r.l.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Engineering Transactions
ISSN
2283-9216
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
88
Country of publishing house
IT - ITALY
Number of pages
6
Pages from-to
103-108
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85122596184