Simultaneously Retrofit of Heat Exchanger Networks and Towers for a Natural Gas Purification Plant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143065" target="_blank" >RIV/00216305:26210/21:PU143065 - isvavai.cz</a>
Result on the web
<a href="http://www.cetjournal.it/cet/21/88/026.pdf" target="_blank" >http://www.cetjournal.it/cet/21/88/026.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET2188026" target="_blank" >10.3303/CET2188026</a>
Alternative languages
Result language
angličtina
Original language name
Simultaneously Retrofit of Heat Exchanger Networks and Towers for a Natural Gas Purification Plant
Original language description
As an essential part of Heat Integration, the heat exchanger network (HEN) plays a vital role in large-scale industrial fields. The optimisation of HEN can increase energy efficiency and considerably save the operating and investment cost of the project. This study presents a novel approach for simultaneous optimisation of plant operating variables and the HEN structure of an existing natural gas purification process. The objective function is the total energy consumption of the studied process. A two-stage method is developed for optimisation. In the first stage, a particle swarm optimisation (PSO) algorithm is developed to optimise variables including tower top pressure, tower bottom pressure, and reflux ratio on the HEN, thereby changing the initial temperatures of cold and hot streams in the HEN. In the second stage, a shifted retrofit thermodynamic grid diagram (SRTGD)-based model and the corresponding solving algorithm was applied to retrofit the HEN. The case study shows that the optimal operating conditions of towers and temperature spans of heat exchangers can be solved by the proposed method to reduce the total energy consumption. The case study shows that the total energy consumption is reduced by 41.5 %. © 2021, AIDIC Servizi S.r.l.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/LTACH19033" target="_blank" >LTACH19033: Transmission Enhancement and Energy Optimized Integration of Heat Exchangers in Petrochemical Industry Waste Heat Utilisation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Engineering Transactions
ISSN
2283-9216
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
88
Country of publishing house
IT - ITALY
Number of pages
6
Pages from-to
157-162
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85122576496