Life Cycle Assessment and Techno-Economic Assessment of Anaerobic Co-Digestion: A Short Review
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143137" target="_blank" >RIV/00216305:26210/21:PU143137 - isvavai.cz</a>
Result on the web
<a href="http://www.cetjournal.it/cet/21/88/151.pdf" target="_blank" >http://www.cetjournal.it/cet/21/88/151.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET2188151" target="_blank" >10.3303/CET2188151</a>
Alternative languages
Result language
angličtina
Original language name
Life Cycle Assessment and Techno-Economic Assessment of Anaerobic Co-Digestion: A Short Review
Original language description
Waste-to-energy conversion such as anaerobic digestion has been widely promoted under the subsidies to decouple from fossil fuel dependence system and its inherent two-fold benefits. It could diversify the renewable energy matrix and divert the waste from the landfill. Co-digestion of two and more feedstocks could enhance bioenergy production and maximise waste recovery. However, the anticipated benefits are not absolute for all circumstances, varying across the type of co-substrate, pretreatment and other settings. The present study aims to overview the life cycle assessment (LCA) and the techno-economic assessment (TEA) of the anaerobic co-digestion processes. The results could provide an insight into the several critical parameters for sustainable co-digestion. Co-digestion of two or more feedstock is favourable since higher anaerobic digestion performances and higher profitability in TEA is shown. Cultivation of energy crops, transportation, pretreatment of feedstock and storage stage each contributes some shares to eutrophication potential (EP), acidification potential (AP), global warming potential (GWP), ozone depletion and fossil depletion. Generally, high anaerobic digestion performances and biogas upgrading can offset the negative environmental impact. Positive net present value is also observed from the co-digestion of feedstock. Copyright © 2021, AIDIC Servizi S.r.l.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemical Engineering Transactions
ISSN
2283-9216
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
88
Country of publishing house
IT - ITALY
Number of pages
6
Pages from-to
907-912
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85122520076