Future advances and challenges of nanomaterial-based technologies for electromagnetic interference-based technologies: A review
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU142889" target="_blank" >RIV/00216305:26210/22:PU142889 - isvavai.cz</a>
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0013935121017035" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0013935121017035</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.envres.2021.112402" target="_blank" >10.1016/j.envres.2021.112402</a>
Alternative languages
Result language
angličtina
Original language name
Future advances and challenges of nanomaterial-based technologies for electromagnetic interference-based technologies: A review
Original language description
The emerging growth of the electronic devices applications has arisen the serious problems of electromagnetic (EM) wave pollution which resulting in equipment malfunction. Therefore, polymer-based composites have been considered good candidates for better EMI shielding due to their significant characteristics including, higher flexibility, ultrathin, lightweight, superior conductivity, easy fabrication processing, environmentally friendly, corrosion resistive, better adhesion with physical, chemical and thermal stability. This review article focused on the concept of the EMI shielding mechanism and challenges with the fabrication of polymer-based composites. Subsequently, recent advancements in the polymer composites applications have been critically reviewed. In addition, the impact of polymers and polymer nanocomposites with different fillers such as organic, inorganic, 2D, 3D, mixture and hybrid nano-fillers on EMI shielding effectiveness has been explored. Lastly, future research directions have been proposed to overcome the limitations of current technologies for further advancement in EMI shielding materials for industrial applications. Based on reported literature, it has been found that the low thickness based lightweight polymer is considered as a best material for excellent material for next-generation electronic devices. Optimization of polymer composites during the fabrication is required for better EMI shielding. New nano-fillers such as functionalization and composite polymers are best to enhance the EMI shielding and conductive properties. © 2021 Elsevier Inc.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ENVIRONMENTAL RESEARCH
ISSN
0013-9351
e-ISSN
1096-0953
Volume of the periodical
neuveden
Issue of the periodical within the volume
205
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
112402-112402
UT code for WoS article
000772669000001
EID of the result in the Scopus database
2-s2.0-85120748461