All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient thermal management strategy of Li-ion battery pack based on sorption heat storage

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU143930" target="_blank" >RIV/00216305:26210/22:PU143930 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0196890422001790" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0196890422001790</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.enconman.2022.115383" target="_blank" >10.1016/j.enconman.2022.115383</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient thermal management strategy of Li-ion battery pack based on sorption heat storage

  • Original language description

    An efficient battery thermal management system (BTMS) is crucial to ensure the working temperatures of the battery are within a suitable range and therefore guarantee performance. However, the current BTM methods not only are limited by weight, space, and energy consumption, but also hardly surmount the contradiction of battery cooling at high temperatures and battery heating at low temperatures. In this work, an innovative passive BTM strategy of Li-ion battery (LIB) pack based on sorption heat storage is numerically investigated. The as-synthesised thermochemical sorbent is supposed to be fabricated as a porous coating layer of batteries to regulate the temperature of the LIB pack, and the pack temperature evolutions under high discharge rates of 3C, 5C, and 7C are analysed. A multi-physics model, coupling electrochemistry of battery, fluid flow, heat transfer, and chemical reaction, is developed to study the dehydration/hydration processes in a proposed BTMS. These multi-physics fields are solved by using the finite element method discretisation approach. Compared to traditional BTMS based on phase change materials (PCMs), this sorption thermochemical-based BTMS can control the battery pack below 55℃ under these high discharge rates due to the prominent advantage of high desorption enthalpy. The maximum temperature differences of the pack using sorption BTMS are 0.8, 1.2, and 1.7 ℃, lower than that of PCM-based BTMS, and a fast temperature lift of ∼ 11℃ can be achieved for the LIB pack in the cool environment thanks to the exothermic adsorption effect. The sorption BTMS can adaptively achieve cooling and preheating of LIB pack and thus maintain the pack works under the desired temperature range. The results of this study may provide a new strategy and prediction on BTMS based on sorption heat storage.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/LTACH19033" target="_blank" >LTACH19033: Transmission Enhancement and Energy Optimized Integration of Heat Exchangers in Petrochemical Industry Waste Heat Utilisation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ENERGY CONVERSION AND MANAGEMENT

  • ISSN

    0196-8904

  • e-ISSN

    1879-2227

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    256

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    115383-115383

  • UT code for WoS article

    000772330500001

  • EID of the result in the Scopus database

    2-s2.0-85124875472