All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weather condition-based hybrid models for multiple air pollutants forecasting and minimisation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144284" target="_blank" >RIV/00216305:26210/22:PU144284 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652622012276" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652622012276</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2022.131610" target="_blank" >10.1016/j.jclepro.2022.131610</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weather condition-based hybrid models for multiple air pollutants forecasting and minimisation

  • Original language description

    With the deterioration of air quality in recent years, the establishment of accurate and efficient forecasting models for pollutants has become the top priority. Due to the imperfect internal mechanism, the traditional numerical model, Weather Research and Forecast - Community Multiscale Air Quality (WRF-CMAQ), whose performance is limited in predicting the concentration of pollutants. To solve that issue presented, this study proposed two hybrid models for pollutant concentration forecasting based on weather conditions of various monitoring points. The hybrid model I applies long and short-term memory neural networks (LSTM) to extract the temporal characteristics and random forest (RF) to extract the non-line characteristics. Then, a fusion layer is built to combine them, which is optimised by the particle swarm optimisation (PSO) algorithm. Based on hybrid model I, hybrid model II also considers the regional synergy of different monitoring points to capture the spatial correlation of weather conditions. Taking a certain region of China as an example, the performance of these two hybrid models is proved. The results and discussions indicate that not only do the hybrid models achieve higher accuracy than other comparable models such as LSTM, convolutional neural network (CNN), and WRF-CMAQ, but they also prove that the regional synergy can significantly improve the effectiveness of air pollutants forecasting. The root mean squared error (RMSE) of the hybrid model II for predicted six pollutants concentration dropped to 1.781, 6.630, 5.556, 4.154, 49.558, 4.074 compared with the RMSE values of the hybrid model I and WRF-CMAQ, which are 1.972, 6.734, 6.731, 4.937, 63.487, 5.422 and 7.98, 38.175, 29.511, 21.077, 78.479, 22.810. This work provides the high-precision prediction and comprehensive evaluation of primary pollutants, which provides a targeting option to deal with the highest predicted pollutants.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    352

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    131610-131610

  • UT code for WoS article

    000793460700002

  • EID of the result in the Scopus database

    2-s2.0-85127499950