All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamic study of the extraction ratio and interstage pressure ratio distribution in typical layouts of SCO2 Brayton cycle under temperature fluctuations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144652" target="_blank" >RIV/00216305:26210/22:PU144652 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S135943112200504X" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S135943112200504X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.applthermaleng.2022.118553" target="_blank" >10.1016/j.applthermaleng.2022.118553</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamic study of the extraction ratio and interstage pressure ratio distribution in typical layouts of SCO2 Brayton cycle under temperature fluctuations

  • Original language description

    Supercritical CO2 Brayton cycle is widely used in industry because of its small compression work and considerable cycle efficiency. In this work, dynamic simulation numerical models of Supercritical CO2 Brayton cycle with three typical layouts (recompression, reheating, intercooling) and a newly proposed layout are developed using thermodynamic equations. After verifying the simulated steady-state values with the experimental ones, key parameters in the recompression and the new layout, as well as their responses under temperature perturbations, are calculated for different extraction ratios. It has been found that larger extraction ratios correspond to lower efficiency but higher stability, and similarly, the new proposed layout is 4.1% less efficient but with a 34% smaller fluctuation amplitude compared to the recompression layout. Then system parameters are calculated for different interstage pressure ratio assignments for the turbine in the reheating model and for the compressor in the intercooling model. The results show the 1st-stage with a pressure ratio of 1.2 has higher power generation and cycle efficiency, as well as more stable generated power. For the newly proposed layout, the pre-compressor power, as well as the fluctuation amplitude of the (RC + IC + PC) model, is much larger than the other compression powers, and the fluctuation amplitude from largest to smallest are IC, (RC + IC + PC), RC, RH. The effects of extraction ratio on efficiency and generated power are much greater than the distribution of interstage pressure ratio, and the maximum efficiency is obtained at the small extraction ratio and the equal pressure ratio of the two stages.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/LTACH19033" target="_blank" >LTACH19033: Transmission Enhancement and Energy Optimized Integration of Heat Exchangers in Petrochemical Industry Waste Heat Utilisation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Thermal Engineering

  • ISSN

    1359-4311

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    212

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    118553-118553

  • UT code for WoS article

    000800484400007

  • EID of the result in the Scopus database

    2-s2.0-85129550332