Dynamic study of the extraction ratio and interstage pressure ratio distribution in typical layouts of SCO2 Brayton cycle under temperature fluctuations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144652" target="_blank" >RIV/00216305:26210/22:PU144652 - isvavai.cz</a>
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S135943112200504X" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S135943112200504X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.applthermaleng.2022.118553" target="_blank" >10.1016/j.applthermaleng.2022.118553</a>
Alternative languages
Result language
angličtina
Original language name
Dynamic study of the extraction ratio and interstage pressure ratio distribution in typical layouts of SCO2 Brayton cycle under temperature fluctuations
Original language description
Supercritical CO2 Brayton cycle is widely used in industry because of its small compression work and considerable cycle efficiency. In this work, dynamic simulation numerical models of Supercritical CO2 Brayton cycle with three typical layouts (recompression, reheating, intercooling) and a newly proposed layout are developed using thermodynamic equations. After verifying the simulated steady-state values with the experimental ones, key parameters in the recompression and the new layout, as well as their responses under temperature perturbations, are calculated for different extraction ratios. It has been found that larger extraction ratios correspond to lower efficiency but higher stability, and similarly, the new proposed layout is 4.1% less efficient but with a 34% smaller fluctuation amplitude compared to the recompression layout. Then system parameters are calculated for different interstage pressure ratio assignments for the turbine in the reheating model and for the compressor in the intercooling model. The results show the 1st-stage with a pressure ratio of 1.2 has higher power generation and cycle efficiency, as well as more stable generated power. For the newly proposed layout, the pre-compressor power, as well as the fluctuation amplitude of the (RC + IC + PC) model, is much larger than the other compression powers, and the fluctuation amplitude from largest to smallest are IC, (RC + IC + PC), RC, RH. The effects of extraction ratio on efficiency and generated power are much greater than the distribution of interstage pressure ratio, and the maximum efficiency is obtained at the small extraction ratio and the equal pressure ratio of the two stages.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/LTACH19033" target="_blank" >LTACH19033: Transmission Enhancement and Energy Optimized Integration of Heat Exchangers in Petrochemical Industry Waste Heat Utilisation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Thermal Engineering
ISSN
1359-4311
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
212
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
118553-118553
UT code for WoS article
000800484400007
EID of the result in the Scopus database
2-s2.0-85129550332