All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144663" target="_blank" >RIV/00216305:26210/22:PU144663 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544222010660" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544222010660</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2022.124163" target="_blank" >10.1016/j.energy.2022.124163</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater

  • Original language description

    Bio-electrochemical systems, such as microbial fuel cells (MFCs), serve as greener alternatives to conventional fuel energy. Despite the burgeoning review works on MFCs, comprehensive discussions are lacking on MFC designs and applications. This review paper provides insights into MFC applications, substrates used in MFC and the various design, technological, and chemical factors affecting MFC performance. MFCs have demonstrated efficacy in wastewater treatment of at least 50% and up to 98%. MFCs have been reported to produce ∼30 W/m2 electricity and ∼1 m3/d of biohydrogen, depending on the design and feedstock. Electricity generation rates of up to 5.04 mW/m−2–3.6 mW/m−2, 75–513 mW/m−2, and 135.4 mW/m−2 have been found for SCMFCs, double chamber MFCs, and stacked MFCs with the highest being produced by the single/hybrid single-chamber type using microalgae. Hybrid MFCs may emerge as financially promising technologies worth investigating due to their low operational costs, integrating low-cost proton exchange membranes such as PVA-Nafion-borosilicate, and electrodes made of natural materials, carbon, metal, and ceramic. MFCs are mostly used in laboratories due to their low power output and the difficulties in assessing the economic feasibility of the technology. The MFCs can generate incomes of as much as $2,498.77 × 10−2/(W/m2) annually through wastewater treatment and energy generation alone. The field application of MFC technology is also narrow due to its microbiological, electrochemical, and technological limitations, exacerbated by the gap in knowledge between laboratory and commercial-scale applications. Further research into novel and economically feasible electrode and membrane materials, the improvement of electrogenicity of the microbes used, and the potential of hybrid MFCs will provide opportunities to launch MFCs from the laboratory to the commercial-scale as a bid to improve the global energy security in an eco-friendly way.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    254

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    24

  • Pages from-to

    124163-124163

  • UT code for WoS article

    000835057700011

  • EID of the result in the Scopus database

    2-s2.0-85133904597