All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Plastic Circular Economy Framework using Hybrid Machine Learning and Pinch Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144664" target="_blank" >RIV/00216305:26210/22:PU144664 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0921344922002312" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0921344922002312</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.resconrec.2022.106387" target="_blank" >10.1016/j.resconrec.2022.106387</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Plastic Circular Economy Framework using Hybrid Machine Learning and Pinch Analysis

  • Original language description

    The worldwide plastic waste accumulation has posed probably irreversible harm to the environment, and the main dilemma for this global issue is: How to define the waste quality grading system to maximise plastic recyclability? This work reports a machine learning approach to evaluating the recyclability of plastic waste by categorising the quality trends of the contained polymers with auxiliary materials. The result reveals the hierarchical resource quality grades predictors that restrict the mapping of the waste sources to the demands. The Pinch Analysis framework is then applied using the quality clusters to maximise plastic recyclability. The method identifies a Pinch Point – the ideal waste quality level that limits the plastic recycling rate in the system. The novel concept is applied to a problem with different polymer types and properties. The results show the maximum recycling rate for the case study to be 38 % for PET, 100 % for PE and 92 % for PP based on the optimal number of clusters identified. Trends of environmental impacts with different plastic recyclability and footprints of recycled plastic are also compared.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/GF21-45726L" target="_blank" >GF21-45726L: Sustainable Plastic Value Chain to Support a Circular Economy Transition</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RESOURCES CONSERVATION AND RECYCLING

  • ISSN

    0921-3449

  • e-ISSN

    1879-0658

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    184

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    106387-106387

  • UT code for WoS article

    000798121400004

  • EID of the result in the Scopus database

    2-s2.0-85129641594