All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Energy-saving design and control strategy towards modern sustainable greenhouse: A review

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144741" target="_blank" >RIV/00216305:26210/22:PU144741 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032122004981" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S1364032122004981</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rser.2022.112602" target="_blank" >10.1016/j.rser.2022.112602</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Energy-saving design and control strategy towards modern sustainable greenhouse: A review

  • Original language description

    A greenhouse is an energy-intensive sector with substantial greenhouse gas emissions and extensive energy consumption. Energy-saving greenhouse strategies become particularly important on the premise of ensuring effective crop production to achieve sustainable energy development. This paper aims to deliver a comprehensive review on crucial energy-saving strategies from greenhouse design to operational stage. This contribution analyses effective energy-saving methods for greenhouse design considering greenhouse structures, ventilation and lighting systems. It details the energy-saving operation of greenhouses by summarising renewable energy technologies and integration systems, including photovoltaic modules, solar collectors, heat pumps and other integrated modules. These environment-friendly technologies achieve the purpose of environment protection and energy conservation of greenhouse. The research findings reveal that more than half of the energy is saved through appropriate greenhouse renovation. Control strategies for improving the energy efficiency of the greenhouse in aspects of monitoring system management and control algorithms have been discussed as well. The neural network combined with other control algorithms is a suitable approach to solve nonlinear control problems with a good control accuracy. In the final part, the life cycle environmental impacts and environmental footprints assessment of greenhouse is discussed. Life cycle assessment of modern integrated greenhouse is expected to be further studied. This review provides valuable insights and suggestions for the design and transformation of modern sustainable greenhouses.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RENEWABLE & SUSTAINABLE ENERGY REVIEWS

  • ISSN

    1364-0321

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    164

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    112602-112602

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85130398935