Membrane based reactors for sustainable treatment of Coronopus didymus L. by developing Iodine doped potassium oxide Catalyst under Dynamic conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144744" target="_blank" >RIV/00216305:26210/22:PU144744 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0045653522016319" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0045653522016319</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chemosphere.2022.135138" target="_blank" >10.1016/j.chemosphere.2022.135138</a>
Alternative languages
Result language
angličtina
Original language name
Membrane based reactors for sustainable treatment of Coronopus didymus L. by developing Iodine doped potassium oxide Catalyst under Dynamic conditions
Original language description
Green nano-technology together with the availability of eco-friendly and alternative sources are the promising candidates to combat environment deteriorations and energy clutches globally. The current work focuses on the synthesis and application of newly synthesized nano catalyst of Iodine doped Potassium oxide I (K2O) for producing sustainable biodiesel from novel non-edible seed oils of Coronopus didymus L. using membrane based contactor to avoid emulsification and phase separation issues. Highest biodiesel yield (97.03%) was obtained under optimum conditions of 12:1 methanol to oil ratio, reaction temperature of 65 for 150 min with the 1.0 wt% catalyst concentration. The lately synthesized, environment friendly and recyclable Iodine doped Potassium oxide K (IO)2 catalyst was synthesized via chemical method followed by characterization via advanced techniques including EDX, XRD, FTIR and SEM analysis. The catalyst was proved to be stable and efficient with the reusability of five times in transesterification reaction. These analysis have reported the sustainability, stability and good quality of biodiesel from seed oil of Coronopus didymus L. using efficient Iodine doped potassium oxide catalyst. Thus, non-edible, environment friendly and novel Coronopus didymus L. seeds and their extracted oil along with Iodine doped potassium oxide catalyst seems to be highly affective, sustainable and better alternative source to the future biodiesel industry. Also, by altering the reaction equilibrium and lowering the purification phases of the process, these studies show the potential of coupling transesterification and a membrane contactor.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CHEMOSPHERE
ISSN
0045-6535
e-ISSN
1879-1298
Volume of the periodical
neuveden
Issue of the periodical within the volume
303
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
135138-135138
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85131446173