All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Renewable energy systems for building heating, cooling and electricity production with thermal energy storage

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144795" target="_blank" >RIV/00216305:26210/22:PU144795 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1364032122004592" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364032122004592</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rser.2022.112560" target="_blank" >10.1016/j.rser.2022.112560</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Renewable energy systems for building heating, cooling and electricity production with thermal energy storage

  • Original language description

    This paper introduces the recent developments in Renewable Energy Systems for building heating, cooling and electricity production with thermal energy storage. Due to the needed Clean Energy Transition in the many countries and regions and the goal of closing Net Zero Energy Buildings, it is crucial to provide efficient Renewable Energy Based heating/cooling systems for buildings. The buildings contribute about 40% of total energy consumption, with significant potential for primary energy savings. The application of various Renewable Energy based systems is discussed including: the presentation of Hybrid Renewable Energy bases systems, methodology for their design and methods for the optimisation of Buildings RES. At present, mostly the systems based on heat pumps and photovoltaics are applied in buildings. However, the sources of those energy systems are unstable, and they are influenced by the climate environment. It makes it necessary to combine thermal and electrical energy storage, to achieve high efficiency. The recently developing electrical energy and chemical storage are Battery Energy Storage Systems and Hydrogen Energy Systems, through it is urgently necessary to overcome the difficulties of high cost, relatively low efficiency and demanding storage environment and so on. For the thermal energy storage, Phase Change Materials (PCMs) show great potential for application – with their use the thermal energy can be accumulated at the time of low energy demand or availability and recovered during a high consumption period. This review also presents the recent developments in PCMs for their application in buildings, both for heating and cooling. Finally, it sorts out some challenging issues of the RES today and guides future development.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RENEWABLE & SUSTAINABLE ENERGY REVIEWS

  • ISSN

    1364-0321

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    165

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    112560-112560

  • UT code for WoS article

    000810514400004

  • EID of the result in the Scopus database

    2-s2.0-85130822159