All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cooling of flue gas by cascade of polymeric hollow fiber heat exchangers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145023" target="_blank" >RIV/00216305:26210/22:PU145023 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2214157X2200466X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2214157X2200466X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.csite.2022.102220" target="_blank" >10.1016/j.csite.2022.102220</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cooling of flue gas by cascade of polymeric hollow fiber heat exchangers

  • Original language description

    Polymeric hollow fibers heat exchangers can be effectively used for flue gas cooling. These heat exchangers are made of hundreds of hollow fibers with an outer diameter of 1.3 mm and a wall thickness of 0.15 mm. Selection of material allows to work with aggressive gasses and condensed liquids without risk of corrosion or damage by chemicals. These fibers may seem to be fragile, but they can stand up the inner pressure above 100 bar at room temperature and have burst pressure of 60 bar at temperature of 80 °C. Their surface is very smooth and that positively contributes to low fouling and its capability of self-cleaning. The flowing condensate is cleaning the fibers during its operating and it carries ash particles size up to 0.22 mm. No marks of abrasion or corrosion were observed on the fibers. Due to the low inner diameter of the fibers, the internal flow is laminar and heat transfer coefficient is velocity independent and high (2317 W/m2K). Values of overall heat transfer coefficient are over 100 W/m2K and are dominantly determined by heat transfer on the gas side. Measured volume heat performance of the tested heat exchangers varied from 4.2 MW/m3 to 2.2 MW/m3.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Research centre for low-carbon energy technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Case Studies in Thermal Engineering

  • ISSN

    2214-157X

  • e-ISSN

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000825395200005

  • EID of the result in the Scopus database

    2-s2.0-85133206732