All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Centroid based person detection using pixelwise prediction of the position

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145026" target="_blank" >RIV/00216305:26210/22:PU145026 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216275:25530/22:39919566

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1877750322001442" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1877750322001442</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jocs.2022.101760" target="_blank" >10.1016/j.jocs.2022.101760</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Centroid based person detection using pixelwise prediction of the position

  • Original language description

    Implementations of person detection in tracking and counting systems tend towards processing of orthogonally captured images on edge computing devices. The ellipse-like shape of heads in orthogonally captured images inspired us to predict head centroids to determine positions of persons in images. We predict the centroids using a fully convolutional network (FCN). We combine the FCN with simple image processing operations to ensure fast inference of the detector. We experiment with the size of the FCN output to further decrease the inference time. We compare the proposed centroid-based detector with bounding box-based detectors on head detection task in terms of the inference time and the detection performance. We propose a performance measure which allows quantitative comparison of the two detection approaches. For the training and evaluation of the detectors, we form original datasets of 8000 annotated images, which are characterized by high variability in terms of lighting conditions, background, image quality, and elevation profile of scenes. We propose an approach which allows simultaneous annotation of the images for both bounding box-based and centroid-based detection. The centroid-based detector shows the best detection performance while keeping edge computing standards.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Cooperation in Applied Research between the University of Pardubice and companies, in the Field of Positioning, Detection and Simulation Technology for Transport Systems (PosiTrans)</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computational Science

  • ISSN

    1877-7503

  • e-ISSN

  • Volume of the periodical

    63

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000828740900003

  • EID of the result in the Scopus database

    2-s2.0-85134355114