Analysis of thermal efficiency of a corrugated double-tube heat exchanger with nanofluids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145041" target="_blank" >RIV/00216305:26210/22:PU145041 - isvavai.cz</a>
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222014256" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222014256</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2022.124522" target="_blank" >10.1016/j.energy.2022.124522</a>
Alternative languages
Result language
angličtina
Original language name
Analysis of thermal efficiency of a corrugated double-tube heat exchanger with nanofluids
Original language description
This research investigated convective heat transfer and hydraulic resistance of smooth and corrugated double-tube heat exchangers at various flow rates from 60 L/h to 200 L/h. The inner tube with a thread structure is designed with three pitches, i.e., 4 mm, 6 mm and 8 mm. Nanofluids are used as tube-side fluids to analyze the enhancement of heat transfer on the inner tube side. Results show that the boundary layer is destroyed by the thread structure, and the heat flux is intensified at the outer tube side. For the double-tube heat exchanger, the combined enhancement technology using thread structure at the side of the outer tube and nanofluids at the side of the inner tube contributes to improvement in the overall heat transfer performance. The maximum increment in the comprehensive performance index is 59% for the case of 1.5 wt% SiC-water nanofluid with a thread pitch of 4 mm at a flow rate of 200 L/h. Finally, the distribution of local temperature difference is analysed theoretically for nanofluids with the optimum particle concentrations, which confirmed the rationality of 1.5 wt% SiC-water nanofluid with a thread pitch of 4 mm. Results reveal that the combined enhancement of using nanofluids and a thread structure has great potential in enhancing the thermal performance of double-tube heat exchangers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Volume of the periodical
neuveden
Issue of the periodical within the volume
256
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
124522-124522
UT code for WoS article
000827245500008
EID of the result in the Scopus database
2-s2.0-85133471369