All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145540" target="_blank" >RIV/00216305:26210/22:PU145540 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222015821" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222015821</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2022.124679" target="_blank" >10.1016/j.energy.2022.124679</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission

  • Original language description

    In this paper, the optimal designing framework for a grid-connected photovoltaic-wind energy system with battery storage (PV/Wind/Battery) is performed to supply an annual load considering vanadium redox battery (VRB) storage and lead-acid battery (LAB) to minimise the cost of system lifespan (CSLS) including the cost of components, cost of purchasing power from the grid and cost of CO2 emissions and the reliability constraint is defined as energy not supplied probability (ENSP). The optimal configuration of the system is found via an artificial electric field algorithm (AEFA). The capability of the design framework with the VRB is evaluated on sizing, CSLS, ENSP and cost of energy (COE) and in achieving a reliable and economical energy system in comparison with design based on the LAB. The results demonstrated that the CSLS (0.7–1%) and COE (0.87–1.2%) are reduced and reliability (7–10%) is improved more in the grid-connected designing framework for 1% of maximum ENSP (ENSPmax = 1%) in comparison with the stand-alone framework due to power purchasing capability from the grid and minimising the CO2 emission. The results cleared that the CSLS (32.7%), and COE (32.8%) are decreased and reliability (2–4.3%) is improved more for ENSPmax = 1% in system design with VRB than the system design using LAB storage due to higher depth of discharge and further efficiency. The results proved that increasing the ENSP constraint causes decreases in the CSLS and COE and enhances the reliability. The better performance of the proposed multi-criteria design framework via the AEFA is confirmed in comparison with the particle swarm optimisation (PSO) and grey wolf optimiser (GWO) to obtain the best configuration of the hybrid system with the lowest CSLS and COE and more reliability.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    257

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    18

  • Pages from-to

    124679-124679

  • UT code for WoS article

    000853698300004

  • EID of the result in the Scopus database

    2-s2.0-85134470993