All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forecasting heterogeneous municipal solid waste generation via Bayesian-optimised neural network with ensemble learning for improved generalisation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145544" target="_blank" >RIV/00216305:26210/22:PU145544 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0098135422002812" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0098135422002812</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compchemeng.2022.107946" target="_blank" >10.1016/j.compchemeng.2022.107946</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forecasting heterogeneous municipal solid waste generation via Bayesian-optimised neural network with ensemble learning for improved generalisation

  • Original language description

    Future projections of municipal solid waste (MSW) generation trends can resolve data inadequacy in formulating a sustainable MSW management framework. Artificial neural network (ANN) has been recently adopted to forecast MSW generation, but the reliability and validity of the stochastic forecast are not thoroughly studied. This research develops Bayesian-optimised ANN models coupling ensemble uncertainty analysis to forecast country-scale MSW physical composition trends. Pearson correlation analysis shows that each MSW physical composition exhibits collinearity with different indicators; therefore, the MSW should be forecasted based on its heterogeneity. The Bayesian-optimised ANN models forecast with smaller relative standard deviations (3.64–27.7%) than the default ANN models (11.1–44,400%). Malaysia is expected to generate 42,873 t/d of MSW in 2030, comprising 44% of food waste. This study provides a well-generalised ANN framework and valuable insights for the waste authorities in developing a circular economy via proper waste management.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computers and Chemical Engineering

  • ISSN

    0098-1354

  • e-ISSN

    1873-4375

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    166

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    107946-107946

  • UT code for WoS article

    000860379200005

  • EID of the result in the Scopus database

    2-s2.0-85136456940