Forecasting heterogeneous municipal solid waste generation via Bayesian-optimised neural network with ensemble learning for improved generalisation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145544" target="_blank" >RIV/00216305:26210/22:PU145544 - isvavai.cz</a>
Result on the web
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0098135422002812" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0098135422002812</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compchemeng.2022.107946" target="_blank" >10.1016/j.compchemeng.2022.107946</a>
Alternative languages
Result language
angličtina
Original language name
Forecasting heterogeneous municipal solid waste generation via Bayesian-optimised neural network with ensemble learning for improved generalisation
Original language description
Future projections of municipal solid waste (MSW) generation trends can resolve data inadequacy in formulating a sustainable MSW management framework. Artificial neural network (ANN) has been recently adopted to forecast MSW generation, but the reliability and validity of the stochastic forecast are not thoroughly studied. This research develops Bayesian-optimised ANN models coupling ensemble uncertainty analysis to forecast country-scale MSW physical composition trends. Pearson correlation analysis shows that each MSW physical composition exhibits collinearity with different indicators; therefore, the MSW should be forecasted based on its heterogeneity. The Bayesian-optimised ANN models forecast with smaller relative standard deviations (3.64–27.7%) than the default ANN models (11.1–44,400%). Malaysia is expected to generate 42,873 t/d of MSW in 2030, comprising 44% of food waste. This study provides a well-generalised ANN framework and valuable insights for the waste authorities in developing a circular economy via proper waste management.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20704 - Energy and fuels
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computers and Chemical Engineering
ISSN
0098-1354
e-ISSN
1873-4375
Volume of the periodical
neuveden
Issue of the periodical within the volume
166
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
107946-107946
UT code for WoS article
000860379200005
EID of the result in the Scopus database
2-s2.0-85136456940