All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thermochemical energy conversion behaviour in the corrugated heat storage unit with porous metal support

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145551" target="_blank" >RIV/00216305:26210/22:PU145551 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222018655" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222018655</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2022.124966" target="_blank" >10.1016/j.energy.2022.124966</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thermochemical energy conversion behaviour in the corrugated heat storage unit with porous metal support

  • Original language description

    Because of the low charging temperature, salt hydrate-based adsorption thermochemical energy storage (TCES) is currently a significant technology that promises long-term energy storage. A corrugated-shaped heat storage unit (HSU) in which embedding porous metal bracket is proposed in this work to enhance heat transfer between the thermochemical material (TCM) wrapped inside and the heat fluid transfer (HTF) in the external corrugated channel. The thermo-chemical conversion behaviours, including reactive transport processes during dehydration (charging) and hydration (discharging), as well as the influence of parameters, are comprehensively investigated. The numerical results indicate that increasing the HTF temperature facilitates the charging process while the discharging can be promoted by decreasing reaction bed temperature. The time required to complete charging and discharging for the reference cases is 2990 s and 5700 s. For both charging and discharging powers of reactive bed, the values dramatically surge in a short time and then gradually decrease, with the maximum powers of 2638 W and 1866 W, respectively. Boosting evaporation temperature (water vapour pressure) accelerates hydration while the effect of condensation temperature on dehydration is insignificant. The reaction period can be further shortened by heightening the thermal conductivity of TCM, and the porosity also has a distinct influence on the reaction. Compared to the storage unit of a straight external channel without a metal bracket inside, this heat storage module saves 34% and 23% in charging and discharging times. The results of this work provide insights into the prediction and improvement of thermochemical conversion behaviours.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    <a href="/en/project/LTACH19033" target="_blank" >LTACH19033: Transmission Enhancement and Energy Optimized Integration of Heat Exchangers in Petrochemical Industry Waste Heat Utilisation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    259

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    23

  • Pages from-to

    124966-124966

  • UT code for WoS article

    000848593100002

  • EID of the result in the Scopus database

    2-s2.0-85135881853