All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pinch-Based Synthesis of Plastics Recycling Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145693" target="_blank" >RIV/00216305:26210/22:PU145693 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.cetjournal.it/cet/22/94/008.pdf" target="_blank" >http://www.cetjournal.it/cet/22/94/008.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2294008" target="_blank" >10.3303/CET2294008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pinch-Based Synthesis of Plastics Recycling Networks

  • Original language description

    Plastic pollution has recently emerged as a major global environmental problem, especially during the global pandemic. The problem spans land, ocean, and air pollution via macro-, micro-, and nanoplastics. Despite the availability of different technologies for recycling plastics under a Circular Economy, their deployment has been hampered by challenges stemming from socio-economic factors. For example, poor segregation of waste by consumers leads to cross-contamination of plastic streams that have recovery potential. Although the enhancement of Plastics Recycling Networks (PRNs) is clearly needed, little progress has been achieved worldwide. In this work, a new class of Process Integration (PI) approaches are developed for optimal planning of PRNs. These approaches draw on the proven capabilities of PI for effective decision support. The basic PRN synthesis problem is defined by a set of sources (waste plastic streams) and sinks (recycling plants) using a systems approach. All streams are assumed to consist of a mix of recyclable polymer and non-recyclable contaminants. Each recycling plant has a predefined processing capacity and upper limit on the contaminant level in its feed stream. Graphical Pinch Analysis (PA) is proposed for this PRN synthesis problem. A scenario-based case study where 95.5% of the available waste is recycled demonstrates its practical application. Prospects for future extensions of the PRN synthesis problem are also discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    94

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    49-54

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85139204394