All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Investigation and Modelling of Cylindrical Dividing Headers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU146652" target="_blank" >RIV/00216305:26210/22:PU146652 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.cetjournal.it/cet/22/94/093.pdf" target="_blank" >http://www.cetjournal.it/cet/22/94/093.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2294093" target="_blank" >10.3303/CET2294093</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Investigation and Modelling of Cylindrical Dividing Headers

  • Original language description

    Flow maldistribution in tubular heat exchangers may cause severe thermal and mechanical operating problems. In this view, the crucial part of a distribution system is the inlet header. Nevertheless, a cylindrical header, the most common one in the process industry, distributes fluid flow into the tube bundle non-uniformly by its nature. One possible way to improve such unsuitable flow conditions is to gradually change the header height. However, variable header height is utilized mainly in equipment with a rectangular cross-section. So far, standard cylindrical headers have not been modified in such a way. This study presents the results of an investigation into the flow behaviour in three dividing headers with circular cross-sections, two of which featured different changes to their height (linear decrease, optimised shape). The corresponding flow distributions were predicted via a simplified mathematical model as well as steady and transient CFD simulations. The obtained results were validated by experiments using additively manufactured headers, and it was found that the predicted flow distributions agreed with the observed trends. The conducted investigation also showed that the linear change of header height significantly improved flow distribution in the middle of the tube bundle. Nevertheless, the significant decrease in the tube flow rates near the distributor closed end caused degradation of the one-value maldistribution criterion compared to the value observed for the standard header design. The proposed modification of the header shape appears to be promising in terms of its future utilization in complete distribution systems and process heat exchangers, because it equalizes lateral flow rates in the middle of the tube bundle to the max. difference of ca. 2 % compared to ca. 6 % observed in the standard cylindrical shape.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20401 - Chemical engineering (plants, products)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Volume of the periodical

    94

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IT - ITALY

  • Number of pages

    6

  • Pages from-to

    559-564

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85139207573