All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Post-consumer plastic sorting infrastructure improvements planning: Scenario-based modeling of greenhouse gas savings with sustainable costs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU146000" target="_blank" >RIV/00216305:26210/23:PU146000 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0301479722021405" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0301479722021405</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jenvman.2022.116567" target="_blank" >10.1016/j.jenvman.2022.116567</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Post-consumer plastic sorting infrastructure improvements planning: Scenario-based modeling of greenhouse gas savings with sustainable costs

  • Original language description

    With the increasing share of waste material recovery, household plastic waste is one of the biggest problems. In most countries, mainly manual sorting is used. Meanwhile, new automated technologies are being developed to expand the range of classifiable types to increase material recovery. The overall automation of the sorting process can help the EU's established recycling targets to be effectively met. However, the new technologies are feasible only in the case of large-capacity centers, which must be conveniently located in the existing infrastructure. This paper presents a two-stage model aiming to modernize the current sorting infrastructure for plastic waste. The approach uses multi-criteria optimization to minimize environmental impact at a reasonable price. The result is the optimal location of new automatic sorting centers, and waste stream flows using existing manual sorting facilities. The model is applied through an initial case study inspired by the Czech Republic data. Optimization output proposes four new automatic sorting lines with a total capacity of 158 kt per year. In most cases, manual sorting is used to reduce the transported weight of plastic waste, while automatic sorting lines separate the remaining, hardly recognized part. More than 60% of separately collected plastic is sorted and determined for material recovery.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20701 - Environmental and geological engineering, geotechnics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF ENVIRONMENTAL MANAGEMENT

  • ISSN

    0301-4797

  • e-ISSN

    1095-8630

  • Volume of the periodical

    325

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000880893800006

  • EID of the result in the Scopus database

    2-s2.0-85140445280