All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Coupling of carboxymethyl starch with 2-carboxyethyl acrylate: A new sorbent for the wastewater remediation of methylene blue

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU146611" target="_blank" >RIV/00216305:26210/23:PU146611 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0013935122024185?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0013935122024185?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.envres.2022.115091" target="_blank" >10.1016/j.envres.2022.115091</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Coupling of carboxymethyl starch with 2-carboxyethyl acrylate: A new sorbent for the wastewater remediation of methylene blue

  • Original language description

    Textile and printing industries play a vital role in the economy of any country. But the effluents of these industries, which contain toxic Methylene Blue (MB) dye when mixed with fresh water, make it unfit for human health and aquatic life. For the removal of MB, different adsorbents were used, but they were expensive, non-biodegradable or less effective. In this research, novel carboxymethyl starch grafted poly 2-carboxyethyl acrylate (CM-St-g-P2CEtA) was synthesized by reacting carboxymethyl starch with 2-carboxyethyl acrylate. The reaction followed a free radical polymerization mechanism. The structure and properties of CM-St-g-P2CEtA were investigated by advanced analytical techniques. The CM-St-g-P2CEtA was employed for the remediation of Methylene Blue (MB) dye from wastewater. The removal percentage (%R) of MB was checked under different parameters, like different pH levels, different initial concentrations of dye, different adsorbent doses, and different contact times. The results obtained during the experiment were subjected to different adsorption and kinetic models. In the kinetic investigation, the experimental results were best represented by the pseudo-second-order kinetic model due to its high R2 value of 0.999. Similarly, with a regression coefficient (R2) value of 0.947, the Langmuir adsorption isotherm was best represented by the experimental results. The Langmuir adsorption model showed that MB dye was adsorbed on the surface of CM-St-g-P2CEtA in a monolayer pattern. The pseudo 2nd order kinetic model suggested that the adsorption process favored chemisorption mechanism. The CM-St-g-P2CEtA showed maximum percentage removal efficiency (%R) of 99.3% for MB dye.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ENVIRONMENTAL RESEARCH

  • ISSN

    0013-9351

  • e-ISSN

    1096-0953

  • Volume of the periodical

    219

  • Issue of the periodical within the volume

    115091

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000910636000001

  • EID of the result in the Scopus database

    2-s2.0-85145613593