All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Higher-order and Weil generalization of Grassmannian

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU146920" target="_blank" >RIV/00216305:26210/23:PU146920 - isvavai.cz</a>

  • Result on the web

    <a href="https://authors.elsevier.com/sd/article/S2452-3216(22)00799-5" target="_blank" >https://authors.elsevier.com/sd/article/S2452-3216(22)00799-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.prostr.2022.12.236" target="_blank" >10.1016/j.prostr.2022.12.236</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Higher-order and Weil generalization of Grassmannian

  • Original language description

    We give a simple mechanical motivation for a generalization of the classical Grassmannian considered as a space of m-dimensional linear subspaces of Rk to higher-orders cases. Our efforts are prolongated to the Weil functor theory, motivated by non-holonomic and semi-holonomic jets, applicable in the description of the Cosserat model.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    MSMF 10 Proceedings

  • ISBN

  • ISSN

    2452-3216

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    65-70

  • Publisher name

    Elsevier

  • Place of publication

    neuveden

  • Event location

    Brno

  • Event date

    Sep 12, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article