On Multi-conditioned Conic Fitting in Geometric Algebra for Conics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU148290" target="_blank" >RIV/00216305:26210/23:PU148290 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00006-023-01277-9" target="_blank" >https://link.springer.com/article/10.1007/s00006-023-01277-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-023-01277-9" target="_blank" >10.1007/s00006-023-01277-9</a>
Alternative languages
Result language
angličtina
Original language name
On Multi-conditioned Conic Fitting in Geometric Algebra for Conics
Original language description
We introduce several modifications of conic fitting in Geometric algebra for conics by incorporating additional conditions into the optimisation problem. Each of these extra conditions ensure additional geometric properties of a fitted conic, in particular, centre point position at the origin of coordinate system, axial alignment with coordinate axes, or, eventually, combination of both. All derived algorithms are accompanied by a discussion of the underlying algebra and computational optimisation issues. Finally, we present examples of use on a sample dataset and offer possible applications of the algorithms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ADV APPL CLIFFORD AL
ISSN
0188-7009
e-ISSN
1661-4909
Volume of the periodical
33
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
30
Pages from-to
„“-„“
UT code for WoS article
000987459200002
EID of the result in the Scopus database
2-s2.0-85159961641