All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of high-speed steel screw drill geometry on cutting performance when machining austenitic stainless steel

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU148700" target="_blank" >RIV/00216305:26210/23:PU148700 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-023-36448-y" target="_blank" >https://www.nature.com/articles/s41598-023-36448-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-023-36448-y" target="_blank" >10.1038/s41598-023-36448-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of high-speed steel screw drill geometry on cutting performance when machining austenitic stainless steel

  • Original language description

    Drilling into the solid material is one of the basic technological operations, which creates a cylindrical hole in an appropriate time with required quality. Drilling operation demands a favourable removal of chips from the cutting area because a creation of an undesirable shape of chips can impart a lower quality of the drilled hole corresponding with the generation of excess heat due to the intense contact of the chip with drill. The solution for a proper machining is a suitable modification of the drill geometry i.e., point and clearance angles as presented in current study. The tested drills are made of M35 high-speed steel characterized by a very thin core at the point of the drill. An interesting feature of the drills is the use of cutting speed higher than 30 m min(-1), with the feed of 0.2 mm per revolution. The surface roughness (Ra and Rz lower than 1 mu m and 6 mu m respectively), cylindricity (0.045 mm), roundness (0.025 mm), perpendicularity of the hole axis (0.025 mm), diameters and position of the individual holes were achieved for a drill with point angle 138.32 degrees and clearance angle 6.92 respectively. The increase of the drill point angle by 6 degrees resulted in the decrease in the feed force of more than 150 N. In addition, an increase of the clearance angle by 1 degrees resulted with a decrease in the feed force of 70 N. The results of the experiment showed that with the correct geometry of the tool the effective machining without using internal cooling can be realised.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    001009117000011

  • EID of the result in the Scopus database

    2-s2.0-85161163248