All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Assessment of the Dynamic Range of Magnetorheological Gradient Pinch-Mode Prototype Valves

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU149791" target="_blank" >RIV/00216305:26210/23:PU149791 - isvavai.cz</a>

  • Alternative codes found

    RIV/70883521:28110/23:63571338 RIV/70883521:28610/23:63571338

  • Result on the web

    <a href="https://www.mdpi.com/2076-0825/12/12/449" target="_blank" >https://www.mdpi.com/2076-0825/12/12/449</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/act12120449" target="_blank" >10.3390/act12120449</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Assessment of the Dynamic Range of Magnetorheological Gradient Pinch-Mode Prototype Valves

  • Original language description

    Magnetorheological (MR) fluids have been known to react to magnetic fields of sufficient magnitudes. While in the presence of the field, the material develops a yield stress. The tunable property has made it attractive in, e.g., semi-active damper applications in the vibration control domain in particular. Within the context of a given application, MR fluids can be exploited in at least one of the fundamental operating modes (flow, shear, squeeze, or gradient pinch mode) of which the gradient pinch mode has been the least explored. Contrary to the other operating modes, the MR fluid volume in the flow channel is exposed to a non-uniform magnetic field in such a way that a Venturi-like contraction is developed in a flow channel solely by means of a solidified material in the regions near the walls rather than the mechanically driven changes in the channel’s geometry. The pinch-mode rheology of the material has made it a potential candidate for developing a new category of MR valves. By convention, a pinch-mode valve features a single flow channel with poles over which a non-uniform magnetic field is induced. In this study, the authors examine ways of extending the dynamic range of pinch-mode valves by employing a number of such arrangements (stages) in series. To accomplish this, the authors developed a prototype of a multi-stage (three-stage) valve, and then compared its performance against that of a single-stage valve across a wide range of hydraulic and magnetic stimuli. To summarize, improvements of the pinch-mode valve dynamic range are evident; however, at the same time, it is hampered by the presence of serial air gaps in the flow channel.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/GF21-45236L" target="_blank" >GF21-45236L: Rheology of magnetorheological fluids subjected to non-uniform magnetic fields - pinch mode</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Actuators

  • ISSN

    2076-0825

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    001130851900001

  • EID of the result in the Scopus database

    2-s2.0-85180484872