All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mechanistic insight and optimisation of hydrothermally pre-treated biowaste-derived biochar for saline water treatment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150494" target="_blank" >RIV/00216305:26210/23:PU150494 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652623026239?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652623026239?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2023.138465" target="_blank" >10.1016/j.jclepro.2023.138465</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mechanistic insight and optimisation of hydrothermally pre-treated biowaste-derived biochar for saline water treatment

  • Original language description

    The valorisation of oil palm empty fruit bunch is challenging due to its poor surface functionalities, which require a comprehensive pre-treatment process. To ensure efficient valorisation of the agricultural waste, the biochar derived from empty fruit bunch is subjected to hydrothermal nitric acid pre-treatment to act as an adsorbent for sodium ions removal from the saline solution. For this newly developed adsorbent, the adsorption study provides important information on the adsorption behaviour of sodium ions and the optimum conditions for sodium ions removal, which is crucial for effective process design and operation control during practical applications. Physicochemical characterisation revealed the successful adsorption of sodium ions by Hydrothermal Nitric acid Pre-treated EFB Biochar (HNO3 EFB-BC. The highest sodium ions removal efficiency of HNO3 EFB-BC (92.04%) was achieved under the optimum reaction conditions: 0.39 M initial concentration of the saline solution, 4.96 g of HNO3 EFB-BC, contact time of 17.4 h and solution pH of 7.46. Upon process optimisation, the adsorption capacity of HNO3 EFB-BC towards sodium ions improved remarkably (p < 0.05) from 78.34 mg g(-1) to 166.45 mg g(-1). The adsorption isotherm and kinetic study are consistent with the Langmuir and pseudo-second-order models, implying a monolayer chemisorption-dominated adsorption process. The promising sodium ions adsorption capacity of HNO3 EFB-BC can be attributed to the enhanced surface functionalities of the adsorbent. The molecular modelling using the density functional theory approach has successfully identified the nitro group as the most favourable functional group in producing the charges sites for sodium ions adsorption, with the most stable reaction route between HNO3 EFB-BC and sodium ions being identified. This study highlighted the density functional theory approach as a tool for identifying the specific functional groups with enhanced adsorption capability for saline water

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10500 - Earth and related environmental sciences

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    421

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    „“-„“

  • UT code for WoS article

    001071378000001

  • EID of the result in the Scopus database

    2-s2.0-85168763301