Mechanistic insight and optimisation of hydrothermally pre-treated biowaste-derived biochar for saline water treatment
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150494" target="_blank" >RIV/00216305:26210/23:PU150494 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0959652623026239?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652623026239?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2023.138465" target="_blank" >10.1016/j.jclepro.2023.138465</a>
Alternative languages
Result language
angličtina
Original language name
Mechanistic insight and optimisation of hydrothermally pre-treated biowaste-derived biochar for saline water treatment
Original language description
The valorisation of oil palm empty fruit bunch is challenging due to its poor surface functionalities, which require a comprehensive pre-treatment process. To ensure efficient valorisation of the agricultural waste, the biochar derived from empty fruit bunch is subjected to hydrothermal nitric acid pre-treatment to act as an adsorbent for sodium ions removal from the saline solution. For this newly developed adsorbent, the adsorption study provides important information on the adsorption behaviour of sodium ions and the optimum conditions for sodium ions removal, which is crucial for effective process design and operation control during practical applications. Physicochemical characterisation revealed the successful adsorption of sodium ions by Hydrothermal Nitric acid Pre-treated EFB Biochar (HNO3 EFB-BC. The highest sodium ions removal efficiency of HNO3 EFB-BC (92.04%) was achieved under the optimum reaction conditions: 0.39 M initial concentration of the saline solution, 4.96 g of HNO3 EFB-BC, contact time of 17.4 h and solution pH of 7.46. Upon process optimisation, the adsorption capacity of HNO3 EFB-BC towards sodium ions improved remarkably (p < 0.05) from 78.34 mg g(-1) to 166.45 mg g(-1). The adsorption isotherm and kinetic study are consistent with the Langmuir and pseudo-second-order models, implying a monolayer chemisorption-dominated adsorption process. The promising sodium ions adsorption capacity of HNO3 EFB-BC can be attributed to the enhanced surface functionalities of the adsorbent. The molecular modelling using the density functional theory approach has successfully identified the nitro group as the most favourable functional group in producing the charges sites for sodium ions adsorption, with the most stable reaction route between HNO3 EFB-BC and sodium ions being identified. This study highlighted the density functional theory approach as a tool for identifying the specific functional groups with enhanced adsorption capability for saline water
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10500 - Earth and related environmental sciences
Result continuities
Project
<a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Volume of the periodical
neuveden
Issue of the periodical within the volume
421
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
„“-„“
UT code for WoS article
001071378000001
EID of the result in the Scopus database
2-s2.0-85168763301