All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficiency improvement of the solar chimneys by insertion of hanging metallic tubes in the collector: Experiment and computational fluid dynamics simulation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150573" target="_blank" >RIV/00216305:26210/23:PU150573 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652623018504?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652623018504?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2023.137692" target="_blank" >10.1016/j.jclepro.2023.137692</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficiency improvement of the solar chimneys by insertion of hanging metallic tubes in the collector: Experiment and computational fluid dynamics simulation

  • Original language description

    The solar chimney power plant (SCPP) is a straightforward and clean technique to generate electricity from solar radiation. However, this technology still faces major challenges, such as low efficiency, which has hindered its industrialization. This study experimentally develops a novel collector design to improve the solar chimney collector's efficiency. The new design includes metallic tubes as solar radiation absorbers hung from the canopy of the collector. The metallic tubes are open at the top and sealed with transparent sheets at the bottom to decrease the solar radiation reflected into the ambient air. Experimental and 3-D computational fluid dynamics (CFD) analyses are performed to validate the new design. The effects of hanging metallic tubes on temperature and velocity distribution are explored. The temperature increased by about 5 K at the chimney inlet, causing a roughly 8% rise in collector efficiency due to the fact that metallic tubes operate as an extended surface. The impact of various tube geometries on solar chimneys' efficiency is examined. The CFD findings reveal that the metallic tube geometry variation has considerably impacted the collector's efficiency. Thus, the collector efficiency is increased by changing tube diameter by around 33.7%, similar to changing tube length by 30%.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20700 - Environmental engineering

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    415

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    „“-„“

  • UT code for WoS article

    001032950000001

  • EID of the result in the Scopus database

    2-s2.0-85162167348