A precise asymptotic description of half-linear differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU150064" target="_blank" >RIV/00216305:26210/24:PU150064 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/mana.202200302" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mana.202200302</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202200302" target="_blank" >10.1002/mana.202200302</a>
Alternative languages
Result language
angličtina
Original language name
A precise asymptotic description of half-linear differential equations
Original language description
We study asymptotic behavior of solutions of nonoscillatory second-order half-linear differential equations. We give (in some sense optimal) conditions that guarantee generalized regular variation of all solutions, where no sign condition on the potential is assumed. For all of these solutions, we establish precise asymptotic formulas, where positive as well as negative potential is considered. We examine, as consequences, also equations with regularly varying coefficients, or with the coefficients viewed as perturbations of exponentials, or the equations under certain critical (double roots) settings. We make also asymptotic analysis of Poincare-Perron solutions. Many of our results are new even in the linear case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GA20-11846S" target="_blank" >GA20-11846S: Differential and difference equations of real orders: Qualitative analysis and its applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
297
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
35
Pages from-to
1275-1309
UT code for WoS article
001093976200001
EID of the result in the Scopus database
2-s2.0-85176123375