All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of droplet dynamics in low-speed gaseous counterflow: Pressure-swirl and twin-fluid spra

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU151854" target="_blank" >RIV/00216305:26210/24:PU151854 - isvavai.cz</a>

  • Result on the web

    <a href="https://iclass2024.ilassasia.org/agenda.html" target="_blank" >https://iclass2024.ilassasia.org/agenda.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of droplet dynamics in low-speed gaseous counterflow: Pressure-swirl and twin-fluid spra

  • Original language description

    CO2 release into the atmosphere, responsible for global warming, can be reduced by spray scrubbing. Sprays are deployed to create an interfacial area for efficient gas-liquid contact in the spray column. The counter-flow of air interacts with the spray and causes droplet deceleration, momentum transfer, and air/droplet entrainment. Understanding the spray/air flow interaction can improve the pressure loss and droplet entrainment models, improve the estimation of entrained air velocity, and provide better insight into the spray column function. Twin-fluid effervescent atomizers, operated at injection pressure of 0.025 MPa and GLR ratios of 2.5 and 5%, were compared with hollow-cone and full-cone atomizers, operated at injection pressures of 0.05 and 0.2 MPa, under the counter-flow conditions. A vertical wind tunnel was used to simulate counter-flow conditions with an air flow velocity ranging from 0 to 1 m/s. The flow was seeded with water mist, generated by the ultrasonic atomizer, so that th

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/GA23-07722S" target="_blank" >GA23-07722S: Advanced energy-efficient modifications of twin-fluid atomizer</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů