All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Novel Correlation for Considering the Effect of Neighboring Droplets on the Evaporation Rate of Solvent Droplets Used in Carbon Capture Applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU151855" target="_blank" >RIV/00216305:26210/24:PU151855 - isvavai.cz</a>

  • Result on the web

    <a href="https://asmedigitalcollection.asme.org/heattransfer/article/146/4/041603/1194176/A-Novel-Correlation-for-Considering-the-Effect-of" target="_blank" >https://asmedigitalcollection.asme.org/heattransfer/article/146/4/041603/1194176/A-Novel-Correlation-for-Considering-the-Effect-of</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1115/1.4064482" target="_blank" >10.1115/1.4064482</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Novel Correlation for Considering the Effect of Neighboring Droplets on the Evaporation Rate of Solvent Droplets Used in Carbon Capture Applications

  • Original language description

    The spraying of chemicals such as mono-ethanolamine (MEA) and aqueous ammonia is widely used in spray columns for CO2 removal from the combustion flue gasses. When droplets in the spray interact with flue gas, due to temperature difference, along with the absorption of CO2 from the flue gas, they also undergo evaporation. Also, the presence of other droplets in the vicinity of a given droplet can influence evaporation as well as gas absorption into it. Understanding the droplet evaporation and the influence of the surrounding droplets on the evaporation of droplets are one of the critical aspects to address for developing reliable models for CO2 capture from flue gasses. This work investigates the influence of neighboring droplets on evaporation of a droplet in question and comparison with evaporation of an isolated droplet. Various configurations of suspended droplets of water, aqueous ammonia, and MEA were examined within a temperature range spanning from 75 degrees C to 125 degrees C. The droplets, placed on a microfiber grid made up of 100 mu m glass fiber, were introduced into a heating chamber, and temporal variation of the droplet size was recorded using backlit imaging. Images were processed using Matlab algorithms to obtain the droplet's evaporation rate. Variation in the evaporation rate is evaluated with respect to the temperature and available surface area for vapor diffusion. The results indicate that the presence of neighboring droplets influences the droplet evaporation, and the magnitude of influence depends both on the number of droplets as well as their proximity. Of the three liquids studied, influence of neighboring droplets found to be more significant in case of MEA. To consider the influence of neighboring droplets and their proximity, a novel independent parameter called surface area ratio (SAR) was introduced by combining both the parameters. The analysis involved investigating the variation in the normalized evaporation rate in relation to

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/GA22-17806S" target="_blank" >GA22-17806S: Advanced liquid film and spray systems for gas cleaning and sorption purposes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ASME Journal of Heat and Mass Transfer

  • ISSN

    2832-8450

  • e-ISSN

  • Volume of the periodical

    146

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    „“-„“

  • UT code for WoS article

    001176189000008

  • EID of the result in the Scopus database

    2-s2.0-85185840947