All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thermal stability of electron beam welded AlCoCrFeNi2.1 alloy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU154741" target="_blank" >RIV/00216305:26210/24:PU154741 - isvavai.cz</a>

  • Alternative codes found

    RIV/68081731:_____/24:00599449

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/2053-1591/ad7ccc" target="_blank" >https://iopscience.iop.org/article/10.1088/2053-1591/ad7ccc</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/2053-1591/ad7ccc" target="_blank" >10.1088/2053-1591/ad7ccc</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thermal stability of electron beam welded AlCoCrFeNi2.1 alloy

  • Original language description

    AlCoCrFeNi2.1 alloy, which belongs to the group of eutectic high-entropy alloys (EHEAs), possesses a combination of increased strength and ductility. It should retain these properties over a wide temperature range due to the high entropy effect of the system. At the same time, eutectic alloys are generally considered to have good castability, which increases the possibility of casting the alloy in larger volumes. One of the processes, that the alloy does not avoid when applied in industry, are the various joining techniques including electron beam welding. The weld area is often in a non-equilibrium state, which increases the risk of failure during operation. The paper therefore discusses the stability of the microstructure and mechanical properties of AlCoCrFeNi2.1 alloy when exposed to short-term elevated temperatures. The material heated at 900 degrees C for 1 h in a vacuum furnace was observed using light and electron microscopy, analyzed for chemical and phase composition and finally subjected to HV0.1 hardness measurement and tensile strength test. The resulting condition was compared with the welded joint before exposure to elevated temperature. The microstructure of the weld was formed by a fine lamellar eutectic over the entire observed area. EBSD analysis confirmed the presence of a combination of FCC and BCC phases. The material hardness reached an average value of 370 HV0.1. Maximum tensile strength of the weld joint was measured at 944 MPa with the corresponding displacement of the crosshead 6.1 mm. The welded joint demonstrated sufficient stability and the ability to withstand short-term severe elevated temperature conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials Research Express

  • ISSN

    2053-1591

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    001325280800001

  • EID of the result in the Scopus database