ON NON-OSCILLATION FOR TWO DIMENSIONAL SYSTEMS OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155179" target="_blank" >RIV/00216305:26210/24:PU155179 - isvavai.cz</a>
Result on the web
<a href="https://real.mtak.hu/210795/" target="_blank" >https://real.mtak.hu/210795/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18514/MMN.2024.4420" target="_blank" >10.18514/MMN.2024.4420</a>
Alternative languages
Result language
angličtina
Original language name
ON NON-OSCILLATION FOR TWO DIMENSIONAL SYSTEMS OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS
Original language description
The paper studies the non-oscillatory properties of two-dimensional systems of non-linear differential equations u ' = g(t)|v|1/alpha sgn v, v ' = -p(t)|u|(alpha)sgn u, where the functions g: [0, +infinity[-> [0, +infinity[, p: [0, +infinity[-> & Ropf; are locally integrable and alpha > 0. We are especially interested in the case of integral(+infinity)g(s) ds < +infinity. In the paper, new non-oscillation criteria are established. Among others, they generalize well-known results for linear systems as well as second order linear and also half-linear differential equations. The criteria presented complement the results of Hartman-Wintner's type for the system in question.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes (electronic version)
ISSN
1787-2405
e-ISSN
1787-2413
Volume of the periodical
25
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
13
Pages from-to
943-954
UT code for WoS article
001402251100031
EID of the result in the Scopus database
2-s2.0-85212320194