Fractional Integration and Differentiation of Asymptotic Relations and Applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F25%3APU156041" target="_blank" >RIV/00216305:26210/25:PU156041 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/mma.10679" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mma.10679</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.10679" target="_blank" >10.1002/mma.10679</a>
Alternative languages
Result language
angličtina
Original language name
Fractional Integration and Differentiation of Asymptotic Relations and Applications
Original language description
The main results of this paper show how asymptotic relations are preserved when integrated or differentiated in the sense of fractional operators. In some of them, the concept of regular variation plays a role. We derive a fractional extension of the Karamata integration theorem and of the monotone density theorem, among others. We offer several approaches that provide deeper insight into relationships between different concepts. Illustrative applications in fractional differential equations are also presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2025
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
1099-1476
Volume of the periodical
48
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
6381-6395
UT code for WoS article
001390751900001
EID of the result in the Scopus database
2-s2.0-85214408501