Estimation of AR Model Parameters of the CVS Signals Using Genetic Algorithms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F00%3A4360006" target="_blank" >RIV/00216305:26220/00:4360006 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Estimation of AR Model Parameters of the CVS Signals Using Genetic Algorithms
Original language description
The paper deals with methods for estimation of spectral characteristics of signals generated by cardiovascular system (CVS). Considering the character of CVS signals, parametric algorithms based on autoregressive (AR) models seem to have convenient p roperties for this purpose. Bacause classical methods used for estimation of AR model parameters are not robust and accurate enough it is necessary to find some more reliable ones. Genetic algorithms took to be a proper tool that can help us. Applyin g of the genetic algorithms for estimation of AR model parameters is the main aim of this work.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MENDEL 2000
ISBN
80-214-1609-2
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
FSI VUT v Brně
Place of publication
Brno
Event location
—
Event date
—
Type of event by nationality
—
UT code for WoS article
—