All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Robust ASR front-end using spectral-based and discriminant features: experiments on Aurora tasks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F01%3APU23547" target="_blank" >RIV/00216305:26220/01:PU23547 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Robust ASR front-end using spectral-based and discriminant features: experiments on Aurora tasks

  • Original language description

    This paper describes an automatic speech recognition front-end that combines low-level robust ASR feature extraction tech-niques, and higher-level linear and non-linear feature transformations. The low-level algorithms use data-derived filters, mean andvariance normalization of the feature vectors, and dropping of noise frames. The feature vectors are then linearly transformed using Principal Components Analysis (PCA). An Artificial Neural Network (ANN) is also used to compute features that are usefulfor classification of speech sounds. It is trained for phoneme probability estimation on a large corpus of noisy speech. These transformations lead to two feature streams whose vectors are concatenated and then used for speech recognition. This method was tested on the set of speech corpora used for the "Aurora" evaluation. Using the feature stream generated without the ANN yields an overall 41% reduction of the error rate over Mel-Frequency Cepstral Coefficients (MFCC) reference feature

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JA - Electronics and optoelectronics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2001

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proc. EUROSPEECH

  • ISBN

    87-90834-09-7

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    429-432

  • Publisher name

    Neuveden

  • Place of publication

    Aalborg

  • Event location

    Aalborg

  • Event date

    Sep 3, 2001

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article