Evolutionary Multiobjective Bayesian Optimization Algorithm:Experimental Study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F01%3APU28649" target="_blank" >RIV/00216305:26220/01:PU28649 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Evolutionary Multiobjective Bayesian Optimization Algorithm:Experimental Study
Original language description
This paper deals with the utilizing of the Bayesian optimization algorithm (BOA) for multiobjective optimization of hypergraph partitioning. The main attention is focused on the incorporation of the Pareto optimality concept. We have modified the standard algorithm BOA for one criterion optimization according to well known niching techniques to find the Pareto optimal set. This approach was compared with standard weighting techniques and the single optimization approach with the constraint. The experimeents are focused mainly on the bi-objective optimization because of the visualization simplicity.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 35th Spring International Conference MOSIS'01, Vol. 1
ISBN
80-85988-57-7
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
101-108
Publisher name
Neuveden
Place of publication
Hradec nad Moravicí
Event location
Hradec nad Moravicí
Event date
May 9, 2001
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—