Towards automated diagnostic evaluation of retina images
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F05%3APU50389" target="_blank" >RIV/00216305:26220/05:PU50389 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26220/06:PU64637
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Towards automated diagnostic evaluation of retina images
Original language description
In this paper we address automatic segmentation of the optic nerve head (ONH) with the long-term goal of automatic diagnosis of the early stages of glaucoma. The images discussed are average images obtained from a scanning laser ophthalmoscope (SLO). Thesegmentation consists of the following main steps: finding a region of interest containing the ONH, constraining the search space for final segmentation, and computing the fine segmentation by an active contour model. The agreement of "true positivee pixels," i.e., pixels attributed to the ONH by both manual and automatic segmentation, is very good. The classification results obtained from three different classifiers using manual or automatic segmentation still reveal the superiority of manual segmentation. One means to further improve automatic segmentation is to use information from an SLO as well as from a fundus camera.
Czech name
Automatické diagnostické hodnocení obrazů sítnice.
Czech description
Morfologická analýza hlavy optického nervu je uznávanou metodou diagnozy glaukomu. Tato analýza závisí na předchozím správném nalezení hranice hlavy optického nervu. První námi vivinutá automatická metoda byla závislá na šumu v obraze, nehomogenním osvětlení a přítomnosti cév. Proto jsme inspirováni současným klinickým výzkumem vytvořili algoritmus provádějící segmentaci v registrovaných multimodálních obrazech sítnice. Multimodální přístup kombinuje tomografický obraz s barevnou fotografií sítnice pomoocí registrace obrazů založené na optimalizaci podobnostního kritéria vzájemné informace. Jádrem segmentačního algoritmu jsou kotvené aktivní kontury inicializované Houghovou transformací použité na morfologicky zpracovaných obrazech. Metoda byla testována na 174 multimodálních obrazových párech. Systém dosáhl 89% správně segmentovaných optických disků ve srovnání s 74% u monomodální metody. Navržený algoritmus je slibným krokem k vytvoření automatického systém skríningu glaukomu.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0572" target="_blank" >1M0572: Data, algorithms, decision making</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Pattern Recognition and Image Analysis
ISSN
1054-6618
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
2
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
4
Pages from-to
273-276
UT code for WoS article
—
EID of the result in the Scopus database
—