Generalized Predictive Control with Adaptive Model Based on Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F05%3APU50469" target="_blank" >RIV/00216305:26220/05:PU50469 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generalized Predictive Control with Adaptive Model Based on Neural Networks
Original language description
Generalized Predictive Control (GPC) is well known control algorithm. If we put together predictive strategy of GPC and Neural Networks model, which is adaptive, then we obtain new controller with many advantages. Neural model is able to observe system changes and adapt itself, therefore regulator based on this model is adaptive. Algorithm was implemented in MATLAB-Simulink with aspect of future implementation to Programmable Logic Controller (PLC) B&R. It was tested on mathematical and physical modelsin soft-real-time realization. Predictive controller in comparison with classical discrete PID controller and it's advantages and disadvantages are shown.
Czech name
Zevšeobecněný prediktivní regulátor s adaptivním modelem na bázi neuronových sítí
Czech description
Článek popisuje implementaci prediktivního regulátoru s modelem na bázi neuronových sítí.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
WSEAS Transactions on Circuits
ISSN
1109-2734
e-ISSN
—
Volume of the periodical
4
Issue of the periodical within the volume
4
Country of publishing house
GR - GREECE
Number of pages
5
Pages from-to
385-389
UT code for WoS article
—
EID of the result in the Scopus database
—