Breast Cancer Classification Using Statistical Features and Fuzzy Classification of Thermograms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F07%3APU69164" target="_blank" >RIV/00216305:26220/07:PU69164 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Breast Cancer Classification Using Statistical Features and Fuzzy Classification of Thermograms
Original language description
Advances in camera technologies and reduced equipment costs have lead to an increased interest in the application of thermography in the medical fields. Thermography is of particular interest for detection of breast cancer as it has been shown that it iscapable of detecting the cancer earlier and is also allows diagnosis of fatty breast tissue. In this paper we perform breast cancer detection based on thermography, using a series of statistical features extracted from the thermograms coupled with a fuzzy rule-based classification system for diagnosis. The features stem from a comparison of left and right breast areas and quantify the bilateral differences encountered. Following this asymmetry analysis the features are fed to a fuzzy classification system. This classifier is used to extract fuzzy if-then rules based on a training set of known cases. Experimental results on a set of nearly 150 cases show the proposed system to work well accurately classifying about 80% of cases, a perfo
Czech name
Klasifikace karcinomu prsu z termogramu s použitím statistických parametrů a fuzzy klasifikátoru
Czech description
Statistická klasifikace termogramu prsu
Classification
Type
D - Article in proceedings
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
FUZZ-IEEE 2007 PROCEEDINGS
ISBN
1-4244-1210-2
ISSN
—
e-ISSN
—
Number of pages
400
Pages from-to
1-400
Publisher name
IEEE
Place of publication
London UK
Event location
London UK
Event date
Jul 23, 2007
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—