Noise and Electro-Ultrasonic Spectroscopy of Polymer Based Conducting Layers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F07%3APU72006" target="_blank" >RIV/00216305:26220/07:PU72006 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Noise and Electro-Ultrasonic Spectroscopy of Polymer Based Conducting Layers
Original language description
We have studied the properties of polymer based thick film layers by noise and electro-ultrasonic spectroscopy. The low frequency noise spectral density is 1/fa type and it is proportional to the square of electric current. The frequency factor a is verynear to 1. From the noise measurements we have estimated the number of point contacts between conducting grains in the measured samples. We have applied new principle for non-destructive testing of conducting solids - Electro-Ultrasonic Spectroscopy. The ultrasonic signal of frequency fU changes the contact area between conducting grains and then resistance is modulated by the frequency of ultrasonic excitation. An intermodulation voltage is created on the structure. It depends on the value of AC current varying with frequency fE and on the ultrasonic excited resistance change ?R varying with frequency fU. The intermodulation component of frequency fm = fE - fU varies linearly with electric excitation and quadratic dependence on ultras
Czech name
Šum a elektro-ultrazvuková spektroskopie vodivých vrstev na bázi polymeru
Czech description
We have studied the properties of polymer based thick film layers by noise and electro-ultrasonic spectroscopy. The low frequency noise spectral density is 1/fa type and it is proportional to the square of electric current. The frequency factor a is verynear to 1. From the noise measurements we have estimated the number of point contacts between conducting grains in the measured samples. We have applied new principle for non-destructive testing of conducting solids - Electro-Ultrasonic Spectroscopy. The ultrasonic signal of frequency fU changes the contact area between conducting grains and then resistance is modulated by the frequency of ultrasonic excitation. An intermodulation voltage is created on the structure. It depends on the value of AC current varying with frequency fE and on the ultrasonic excited resistance change ?R varying with frequency fU. The intermodulation component of frequency fm = fE - fU varies linearly with electric excitation and quadratic dependence on ultras
Classification
Type
D - Article in proceedings
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F05%2F2095" target="_blank" >GA102/05/2095: Noise sources in semiconductor materials and devices</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Noise and Fluctuations
ISBN
978-0-7354-0432-8
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
277-280
Publisher name
American Institute of Physics
Place of publication
USA
Event location
Tokyo
Event date
Sep 9, 2007
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—