Boundary Value Problems for Delay Differential Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F10%3APU87349" target="_blank" >RIV/00216305:26220/10:PU87349 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Boundary Value Problems for Delay Differential Systems
Original language description
Conditions are derived of the existence of solutions of linear Fredholms boundary-value problems for systems of ordinary differential equations with constant coefficients and a single delay, assuming that these solutions satisfy the initial and boundaryconditions. Utilizing a delayed matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and analytical form of a criterion for the existence of solutions in a relevant space and, moreover, to the construction of a family of linearly independent solutions of such problems in a general case with the number of boundary conditions (defined by a linear vector functional) not coinciding with the number of unknowns of a differential system with a single delay.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0469" target="_blank" >GA201/08/0469: Oscillatory and asymptotic properties of solutions of differential equations</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Difference Equations
ISSN
1687-1839
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—