Nonlinear identification based on RBF neural network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F11%3APU94690" target="_blank" >RIV/00216305:26220/11:PU94690 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Nonlinear identification based on RBF neural network
Original language description
This article is focused on the off-line identification of nonlinear dynamic systems. Hammerstein model was used for this identification. RBF (Radial Basis Function) neural network is used here to approximate the input nonlinear static function. This network is implemented as a piecewise linear function.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F09%2F1680" target="_blank" >GA102/09/1680: Control Algorithm Design by Means of Evolutionary Approach</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DAAAM International Scientific Book
ISSN
1726-9687
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
11
Country of publishing house
AT - AUSTRIA
Number of pages
8
Pages from-to
547-554
UT code for WoS article
—
EID of the result in the Scopus database
—