Countable extensions of the Gaussian complex plane determineted by the simplest quadratic polynomial.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F11%3APU95681" target="_blank" >RIV/00216305:26220/11:PU95681 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Countable extensions of the Gaussian complex plane determineted by the simplest quadratic polynomial.
Original language description
There is solved a certain modified problem motivated by the Einsteins special relativity theory - usually called the problem of a realization of structures. In particular it is show that for any topology on the Gaussian plane of all complex numbers monoids of all continuous closed complex functions and centralizers of Douady-Hubbard quadratic polynomials are different. There are also constructed various extensions of the complex plane allowing the above mentioned realization for centralizers of extended simple quadratic function in the complex domain.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. Ninth Inernat. Conference on Soft Computing Applied in Computer and Economic Enviroments (ISIC 2011)
ISBN
978-80-7314-221-6
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
103-113
Publisher name
EPI Kunovice
Place of publication
Kunovice
Event location
Kunovice
Event date
Jan 21, 2011
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—