All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Scalar Potential of a Vector Field

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F12%3APR26456" target="_blank" >RIV/00216305:26220/12:PR26456 - isvavai.cz</a>

  • Result on the web

    <a href="http://matika.umat.feec.vutbr.cz/software/maplenet/ScalarPotentialOfVectorField.html" target="_blank" >http://matika.umat.feec.vutbr.cz/software/maplenet/ScalarPotentialOfVectorField.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Scalar Potential of a Vector Field

  • Original language description

    A scalar potential of a vector field F is a scalar function f such that grad(f)=F. The potential of a vector field is in a close relationship with the independence of the oriented line integral on the integration path. Namely, if F is a conservative (potential) vector field, i.e. if it has a potential, then the line integral of F does not depend on the integration path but only on the end points of the line. This means that the work done when moving a particle from a point A to a point B is independentof the path chosen. A vector field is conservative if it has a zero rotation. The potential has a great importance in the description of electric and magnetic fields. With help of our program, the scalar vector potential of a given vector field F is computed. The vector field can be two or three-dimensional. First, it is verified that F is conservative. Then the potential is found. Finally, the user can evaluate line integrals of F with help of the potential.

  • Czech name

  • Czech description

Classification

  • Type

    R - Software

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Internal product ID

    ScalarPotentialOfVectorField

  • Technical parameters

    Software je spouštěn ze serveru UMAT FEKT VUT v Brně prostřednictvím internetového prohlížeče. Na klientském PC je nutné mít nainstalovánu Javu. Podmínkou spuštění softwaru je přístup k serveru UMAT FEKT VUT prostřednictvím WWW - ten není omezován, takžesoftware může využívat libovolná vědecká nebo výzkumná instituce.

  • Economical parameters

    Ekonomické parametry (zvýšení zisku, objemu výroby apod.) prozatím nejsou známy. Jedná se o software využitelný v různých projektech aplikovaném výzkumu.

  • Owner IČO

    00216305

  • Owner name

    Ústav matematiky