Asymptotic upper and lower estimates of a class of positive solutions of a discrete linear equation with a single delay
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F12%3APU98503" target="_blank" >RIV/00216305:26220/12:PU98503 - isvavai.cz</a>
Result on the web
<a href="http://www.hindawi.com/journals/aaa/2012/764351/" target="_blank" >http://www.hindawi.com/journals/aaa/2012/764351/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Asymptotic upper and lower estimates of a class of positive solutions of a discrete linear equation with a single delay
Original language description
We study a frequently investigated class of linear difference equations with a positive coefficient p(n) and a single delay k. Recently, it was proved that if the function p(n) is bounded above by a certain function, then there exists a positive vanishing solution of the considered equation, and the upper bound was found. Here we improve this result by finding even the lower bound for the positive solution, supposing the function p(n) is bounded above and below by certain functions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Abstract and Applied Analysis
ISSN
1085-3375
e-ISSN
—
Volume of the periodical
2012
Issue of the periodical within the volume
ArticleID
Country of publishing house
FK - FALKLAND ISLANDS (MALVINAS)
Number of pages
12
Pages from-to
1-12
UT code for WoS article
—
EID of the result in the Scopus database
—