All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thermal Conductivity and Heat Capacity of Biological Tissues Thermal Conductivity and Heat Capacity of Biological Tissues Thermal Conductivity and Heat Capacity of Biological Tissues Thermal Conductivity and Heat Capacity of Biological Tissues

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU105626" target="_blank" >RIV/00216305:26220/13:PU105626 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thermal Conductivity and Heat Capacity of Biological Tissues Thermal Conductivity and Heat Capacity of Biological Tissues Thermal Conductivity and Heat Capacity of Biological Tissues Thermal Conductivity and Heat Capacity of Biological Tissues

  • Original language description

    This paper deals with a measurement of temperature dependencies of thermal properties only by one measure system. Specific heat and thermal conductivity are two general thermal properties subscribed here. Thermal properties of each matter are dependent on their own temperature and are various in whole temperature range. Temperature dependencies of many commercial materials are well known. But temperature dependencies of biological tissues are very bad to find. However knowledge of these parameters is very important for the thermal processes computer simulation. .The methodology described here is based on deficiencies of current measuring devices and methods. The thermal conductivity of biological tissues is measured with special needle (very thin and quite long) called the needle probe. This method has some good known deficiencies which are described in this paper. Specific heat is measured with Differential Scanning Calorimetry (DSC). The DSC is conventional method without serious deficiencies. Big disadvantage of current thermal properties measurement is in necessary using of both methods, i.e. two devices must be used. Methodology described here is based on simultaneous measurement of thermal conductivity and specific heat. It is the main advantage of our methodology. Measure system was tested only for measuring of thermal conductivity of 1 % agar and for one steady state temperature. Next part of research will be focused on specific heat measurement and temperature dependencies of both physical quantities contained here. Results of temperature dependencies measurement will be used in computer simulation for hypothermia cancer destroying.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JA - Electronics and optoelectronics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The Electromagnetics Academy PIERS 2013

  • ISBN

    978-1-934142-20-2

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1681-1683

  • Publisher name

    PIERS

  • Place of publication

    Neuveden

  • Event location

    Stockholm

  • Event date

    Aug 12, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article