Newton-Kantorovich convergence theorem of a new modified Halleys method family in a Banach space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU106729" target="_blank" >RIV/00216305:26220/13:PU106729 - isvavai.cz</a>
Result on the web
<a href="https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-325" target="_blank" >https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-325</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-1847-2013-325" target="_blank" >10.1186/1687-1847-2013-325</a>
Alternative languages
Result language
angličtina
Original language name
Newton-Kantorovich convergence theorem of a new modified Halleys method family in a Banach space
Original language description
A Newton-Kantorovich convergence theorem of a new modified Halleys method family is established in a Banach space to solve nonlinear operator equations
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Difference Equations
ISSN
1687-1839
e-ISSN
1687-1847
Volume of the periodical
2013
Issue of the periodical within the volume
325
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
1-11
UT code for WoS article
—
EID of the result in the Scopus database
—