Attribute Frameworks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APR27959" target="_blank" >RIV/00216305:26220/14:PR27959 - isvavai.cz</a>
Result on the web
<a href="http://matika.umat.feec.vutbr.cz/software/webmath/AttributeFrameworks.jsp" target="_blank" >http://matika.umat.feec.vutbr.cz/software/webmath/AttributeFrameworks.jsp</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Attribute Frameworks
Original language description
Formal context is one of the key notions in Formal Concept Analysis. It is motivated by idea of concetrating the information of various types at one algebraic structure. Especially it is used in connection with data representation and organization. Framework is a formal context whose incidence relation is the membership relation. The objects are called places and the attributes are collections of places connected, for instance, by a possible presence of some physical object. The set of attributes is called a framology. Both structures may be used for representation of information and data of various type, including the properties of other mathematical objects, like dynamical systems. However, the framework representation is sometimes more natural, especially for structures having some spatial or topological character. Application Attribute Frameworks checks if the formal context is correctly given by the input and then it calculates the framework associated with the formal context on t
Czech name
—
Czech description
—
Classification
Type
R - Software
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Internal product ID
AttributeFrameworks
Technical parameters
Software je spouštěn ze serveru UMAT FEKT VUT v Brně prostřednictvím internetového prohlížeče. Na klientském PC je nutné mít nainstalovánu Javu. Podmínkou spuštění softwaru je přístup k serveru UMAT FEKT VUT prostřednictvím WWW - ten není omezován, takžesoftware může využívat libovolná vědecká nebo výzkumná instituce. Pro vědecké a výzkumné účely lze software využívat zdarma. V ostatních případech kontaktujte RNDr. M. Nováka, Ph.D., Vysoké učení technické v Brně, UMAT FEKT, Technická 8, 616 00 Brno, email: novakm@feec.vutbr.cz, tel.: 541143135.
Economical parameters
Ekonomické parametry (zvýšení zisku, objemu výroby apod.) prozatím nejsou známy. Jedná se o software využitelný v různých projektech aplikovaném výzkumu.
Owner IČO
00216305
Owner name
Ústav matematiky