Optimization of Machine Learning Parameters for Spectrum Survey Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU110396" target="_blank" >RIV/00216305:26220/14:PU110396 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimization of Machine Learning Parameters for Spectrum Survey Analysis
Original language description
This paper shows preliminary results of the optimization of machine learning parameters for cognitive radio application by brutal force calculations. We were analyzing frequency occupancy data of the huge measurement campaign of the spectrum background. For these date there are two possible states. Firstly, limited frequency band is occupied (detected signal level is above the threshold) by the other frequency signal | there will be an interference for our system for this frequency band. Secondly, the frequency band is free of any other wireless radiation. These true/false data are analyzed in a context of the cognitive radio by the reinforcement learning and simple learning. Each channel received a score from the learning algorithm given by weighting function. The quality of the output scores is discussed in this paper according to the learning algorithm parameters and optional learning time.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/ED2.1.00%2F03.0072" target="_blank" >ED2.1.00/03.0072: Centre of sensor, information and communication systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of PIERS 2014 in Guangzhou
ISBN
978-1-934142-28-8
ISSN
1559-9450
e-ISSN
—
Number of pages
4
Pages from-to
612-615
Publisher name
Neuveden
Place of publication
Neuveden
Event location
Guangzhou
Event date
Aug 25, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000393225900133